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A qualitative discussion of the essentials of small-polaron motion is presented. After a very brief 
description of the notion of a small polaron and the situation under which it is formed, the principal 
physical features and predictions of the theory of small-polaron transport is addressed. Specifically, 
small-polaron band and hopping motion are both initially considered with the discussion there- 
after being restricted to hopping motion. First quantum-mechanical treatments of small-polaron 
hopping motion are considered. Then the semiclassical approach to the calculation of the high- 
temperature (KT 2 ~~~~~~~ ) adiabatic and nonadiabatic jump rate is described with the question 
of correlated hopping motion also being addressed. After this, the high-frequency absorption 
associated with small-polaron motion is considered. Finally, a review of the Hall-mobility calcula- 
tions and some comments about the thermoelectric power are presented. 

The purpose of this paper is to present some 
essential features of the theory of small- 
polaron motion. As will become clear shortly, 
the insulators to which this discussion may 
find applicability are those in which the 
electronic carriers are characterized as 
having “low-mobilities,” i.e., mobilities less 
than, say, 1 cm2/V sec. 

To begin, let us define what we mean by a 
polaron, in general, and a small polaron, 
in particular. If a carrier remains in the vicinity 
of a particular atomic site over a time interval 
longer than a typical vibrational period, the 
atoms in the neighborhood ofthe excess charge 
will have sufficient time to assume new equi- 
librium positions consistent with the presence 
of the added charge. These atomic displace- 
ments will generally produce a potential well 
for the excess carrier. If this carrier-induced 
potential well is sufficiently deep, the carrier 
may occupy a bound state, being unable to 
move without an alteration of the positions 
of the surrounding atoms. The unit com- 
prising the bound carrier and its induced 
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lattice deformation is termed a polaron. 
Alternatively, since the potential well resulting 
from the carrier-induced displacements acts 
to “trap” the carrier itself, the carrier is often 
referred to as being self-trapped. In addition, 
the adjective small in the term smaIlpolaron 
indicates that the self-trapped carrier is 
essentially confined to a “small region” 
which is typically just a single atomic site. 

Unfortunately, the term polaron is some- 
what misleading. The name polaron is derived 
from early considerations of a model in which 
the carrier-induced potential well arises 
solely from the classical (electrostatic) inter- 
action of a carrier with the optical-mode 
dipoles of a polar material. However, the 
argument that a stationary carrier will induce 
deformation, and hence a potential well, which 
will tend to hold it in place, is quite general 
and is not at all restricted to a polar system. 
In fact, the best experimental evidence for the 
existence of small polarons is found in situa- 
tions in which the carrier interacts with the 
atoms via an electron-lattice interaction which 
is short-range rather than via the long-range 
(electrostatic) interaction characteristic of the 
early theoretical discussions. For instance, 
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small polarons even exist in nonpolar crystals 
such as orthorhombic sulfur and realgar, 
As& (I, 2). Thus, one should not restrict 
consideration of small-polaron formation to 
polar materials in which the classical coupling 
of an electron to the optical modes of an 
ionic lattice may be large, in this sense the 
term pohron is a misnomer. It should be 
remembered that self trapping occurs in both 
polar and nonpolar materials and may be 
associated with the carrier’s interaction with 
both acoustic and optical-mode lattice vibra- 
tions. 

The present discussion is not concerned 
with the question of determining the conditions 
under which small polarons are formed, but 
rather the aim here is to discuss the transport 
properties of small polarons. Thus, for the 
present, it will simply be noted that for suffi- 
ciently (but not unreasonably) large values 
of the electron-lattice coupling strength 
small polarons will be formed. The theory of 
their formation will be discussed more fully 
by this author later at this conference. 

Let us now consider the energetic situation 
which prevails in the case of an excess electron 
forming a small polaron. Namely, as a result 
of a carrier displacing the atoms surrounding 
it, its energy is reduced by an amount 2E,, 
while the strain energy of the lattice associated 
with producing this distortion is increased by 
an amount E,,. This yields a net reduction of 
the energy of the system comprising an electron 
and a deformed lattice, relative to that of an 
electron in an undeformed lattice, by the 
amount Eb; this energy is termed the small- 
polaron binding energy. Furthermore, since 
the small polaron may equally well reside on 
any one of the geometrically equivalent sites 
in the crystal!, we may expect the formation of 
a small-polaron band analogous to an elec- 
tronic band of a rigid lattice. 

Pursuing the analogy with an electronic 
band, we may proceed as in the standard tight- 
binding approach to view the wavefunction 
of the small polaron as the sum of local wave- 
functions; in particular, in the case of the 
small polaron it is appropriate to take the 
local wavefunction to be a product of the 
local electronic wavefunction and the vibra- 
tional wavefunction associated with the 

concomitant local deformation (3). The width 
of the small-polaron band calculated in this 
modified tight-binding scheme, is proportional 
to the product of an electronic transfer 
integral and a vibrational overlap integral. 
Each of the two vibrational wavefunctions 
in the vibrational overlap integral represents 
a localized lattice deformation with the two 
deformations and concomitant wavefunctions 
being related by a simple lattice translation 
of one lattice spacing. This vibrational overlap 
factor, related to atomic tunneling, is typic- 
ally very small. Thus, in a crystal the small- 
polaron band is usually extremely narrow, 
its width being very small compared with 
even vibrational energies. This is because the 
motion of the carrier requires the concomitant 
transport of an atomic displacement pattern. 

A small polaron in an ideal crystal may move 
from site to site via two distinct processes. 
The first involves the tunneling of a small 
polaron between neighboring sites with no 
change in the phonon population. These so- 
called diagonal processes involve simply 
translating the carrier and its self-induced 
lattice distortion between adjacent sites 
without any change in the atomic vibratory 
motion; this corresponds to band motion. 
The complementary processes are those in 
which the phonon population changes with a 
site-to-site transfer. These processes, termed 
nondiagonal processes, correspond to the 
phonon-assisted tunneling of the carrier 
between adjacent sites. Thus, the small-polaron 
mobility is a sum of two contributions: one 
associated with small-polaron band motion 
and the other with small-polaron hopping 
motion. In an ideal crystal the small-polaron 
band mobility will predominate at absolute 
zero. With rising temperature the band con- 
tribution to the mobility will fall, while the 
hopping component will increase until, at 
sufficiently high temperatures, small-polaron 
motion proceeds predominantly via phonon- 
assisted hopping. The actual temperature 
of the changeover depends on the details of 
the model [the details of the coupling of the 
electron to both the optical and acoustic 
phonons of the crystal and the model for the 
“scattering” associated with small-polaron 
band motion]. However, the extreme narrow- 



248 DAVID EMITi 

ness of the small-polaron band leads one to 
expect that the band motion typically will be 
washed out by whatever disorder exists in a 
real crystal. Thus, only small-polaron hopping 
motion will be discussed. Examples of small- 
polaron hopping motion appear to be found 
in the hopping of Ni3+ holes around Li+ 
impurities in NiO and in the unbound hopping 
of Mn3+ holes in MnO (4, 5). In the first case 
the observed high-frequency conductivity is 
associatedwithsmall-polaronhoppingmotion. 
In the second example the hopping of small- 
polaron holes give rise to a dc conductivity. 

In the following discussion most of our 
concern will be focussed on calculations in 
which the electronic transfer integral associ- 
ated with a small-polaron hop is sufficiently 
small so as to treat it perturbatively; the 
phonon-assisted site-to-site jump rate is then 
proportional to some power of the relevant 
electronic transfer integral. Physically, this 
regime corresponds to a situation in which the 
electron cannot adiabatically follow an alter- 
ation of the atomic positions. Thus this is 
termed nonadiabatic small-polaron motion. 
The complementary regime, in which the 
electron can always adjust to the atomic state, 
is termed the adiabatic regime and will also 
be discussed here. 

The fundamental quantity with which we 
sha!! now be concerned is the rate which 
characterizes a phonon-assisted transition 
that takes a small-polaron from one site to a 
neighboring site. If one considers each hop 
of a carrier to be uncorrelated with its pridr 
hops (or hops of other carriers) then the rele- 
vant jump rate is calculated by placing a small 
polaron on a particular site at some initial 
time and then computing the rate at which it 
moves to a neighboring site. The lattice 
vibrations then act as a thermal bath with 
which the electron can exchange energy. 
It is clear that a necessary condition for the 
lattice vibrations to fulfill this function is that 
vibrational energy be capable of being trans- 
ferredfrom lattice site to lattice site, i.e., there 
must be adequate dispersion of the vibrational 
frequencies. 

The nonadiabatic jump rate may be calcu- 
lated exactly (6, 7). In Fig. 1 the phonon- 
assisted jump rate associated with a small- 

FIG. 1. The natural logarithm of the optical-phonon- 
assisted jump rate in dimensionless units is plotted 
against 0/r@= Aw&c) for E,/liwO = 10, and (a) 
2rrw,/w0 = 0.5, and (b) 2nwb/w0 = 0.05. 

polaron hop, in units of 2nJ2/A2c00 [J is the 
electronic transfer integral and w. is the mean 
optical-mode frequency], is plotted vs reci- 
procal temperature, in units of the optical 
mode temperature, 0 = &B&C, for two values 
of the phonon-dispersion parameter, wb; 
the width of the optical band is 6w,. Focusing 
attention on either one of the two curves of 
Fig. 1, it is seen that two distinct temperature 
dependences are manifested. At sufficiently 
low temperatures, (2E,/Tio,)csch(/%o,/2)<1 
[in the case of small-polaron hopping (2Eb/ 
Aw,) $11, multiphonon processes are frozen 
out and the jump rate is dominated by the 
phonon-assisted process which involves the 
absorption of the minimum amount of vibra- 
tional energy which results in an energy con- 
serving hop. In the case at hand, a carrier’s 
interaction with only optical phonons, this 
process is a two phonon process. Namely, a 
phonon of energy 40, is absorbed and 
another is emitted. The low-temperature 
jump rate is concomitantly activated with the 
activation energy ho, associated with the 
probability of absorbing a phonon of energy 
tie,. In the complementary high temperature 
regime multiphonon processes are no longer 
frozen out. Then the jump rate manifests a 
thermally activated behavior with the activa- 
tion energy c2 = Eb/2. It should be noted that 
this high-temperature activation energy is 
not associated with phonon energies but 
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simply with the electron-lattice coupling 
strength and the stiffness of the material, 
the parameters involved in &. The fact that the 
activation energy depends on no quantum- 
mechanical quantities suggests that a semi- 
classical interpretation of this high-tempera- 
ture activation energy is possible. Later, we 
shall see that this is, in fact, the case. It is 
interesting to note that in the typical example 
illustrated in Fig. 1, the transition between 
the low-temperature and high-temperature 
regimes occurs ‘over a relatively narrow range 
of temperature. This is a feature of both the 
(representative) values of the parameters used 
in this plot and the fact that the electron- 
lattice interaction only involves optical phon- 
ons. 

Finally, some comment should be made 
about the role of vibrational dispersion in 
this calculation. The upper curve of the two 
in Fig. 1 differs from the lower curve solely 
in that the dispersion in this case is smaller. 
The dispersion dependence is greater as the 
temperature is lowered. If one proceeds to 
the limit of zero vibrational dispersion the 
rate increases #and becomes undefined. Alter- 
natively, as the dispersion is increased, the 
dispersion dependence of the jump rate 
becomes less and less. An interesting aspect 
of the optical phonon-assisted jump rate 
(which will not be dwelled on here) is that 
it is undefined for a one-dimensional system: 
an attempt to calculate it yields a divergent 
result for all values of the optical bandwidth; 
Fig. 1 is for a three-dimensional lattice. 

If a carrier interacts with the atoms of a 
lattice via a short-range interaction, such as 
when a carrier on a transition metal ion dis- 
places adjacent ligands as in, say, MnO (5), 
the interaction between the carrier and the 
acoustic phonons is, a priori, comparable to 
that between the carrier and optical phonons. 
Thus one is led to consider the jump rate in the 
situation in which the carrier interacts solely 
with acoustic phonons (8). This situation 
differs from the optical phonon problem in a 
fundamental manner. Namely, since the 
acoustic phonons with which a carrier can 
interact extend from the Debye energy down to 
zero energy, at no finite temperature are all 
acoustic phonons frozen out, i.e., KT > ho, 

from some q. Because there is no special 
freezing out energy for all the phonons, a 
thermally activated temperature-dependence 
of the jump rate will not be observed at low- 
temperatures. This is illustrated by the curve 
of Fig. 2, in which the logarithm of the phonon- 
assisted jump rate, in units of P/PO,, is 
plotted vs 0,/T, where 0, is the temperature 
corresponding to the energy of the maximum 
energy phonon with which a carrier can inter- 
act, ho, = K8,. At low temperatures the 
jump rate is nonactivated. As in the optical- 
phonon calculation, when the temperature is 
raised above the temperature corresponding 
to the maximum-energy phonon with which 
the carrier can interact, the jump rate becomes 
thermally activated. In fact, as in the optical 
phonon problem, this high-temperature be- 
havior can be understood via a semiclassical 
picture. 

In the main, the remainder of this summary 
will be devoted to studies of small-polaron 
hopping motion within this high-temperature 
semiclassical regime. A fundamental concept 
characteristic of this regime is the notion of 
a coincidence event. Specifically, taking the 
electronic energy-level associated with a 
carrier occupying any site in a crystal to be a 
function of the instantaneous positions of the 
atoms of the crystal, it may be seen that, since 
the positions of the atoms are constantly 

FIG. 2. The logarithm of the acoustic-phonon- 
assisted jump rate in dimensionless units is plotted 
against S,,,/T(& s iio,,,/rc) for a typical value of the 
electron-lattice coupling strength. 
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changing(associated with the vibratory motion 
of the lattice), the electronic energy associated 
with a carrier occupying any given site is also 
changing. Amidst the myriad of distortional 
configurations which are assumed by the 
vibratory atoms, occasionally a situation is 
encountered in which the electronic energy of 
an electron at a given site “momentarily” 
equals that which it would have if it occupied 
an adjacent site. Such an occurrence is termed 
a coincidence event (3). While an energy coin- 
cidence is viewed as instantaneous in terms of 
classical physics, in quantum mechanics it 
has a finite duration. If this time duration is 
long compared with the time it takes an elec- 
tron to transfer between coincident sites, 
-h/J, then the electron can always “follow 
the lattice motion” and avail itself of the 
opportunity to make a hop. This situation is 
characteristic of the so-called adiabatic regime. 
Alternatively, the time required for an electron 
to hop may be large compared with the dura- 
tion of a coincidence. Then an electron will 
not always follow the lattice motion and hop 
when a coincidence event presents itself; 
this is the nonadiabatic domain. In this case 
the jump rate, and hence the drift mobility, 
is reduced from what it is in the adiabatic 
regime by a factor P, P < 1, where P is the 
probability that given a coincidence event the 
carrier will hop (3, 6). Finally, it is noted the 
minimum energy required to produce a lattice 
deformation associated with a coincidence 
event is just the activation energy character- 
istic of the high-temperature regime of the 
previously described jump-rate studies. 

In thinking about small-polaron hopping 
motion one typically considers successive 
hops of a carrier to be uncorrelated with one 
another. However, the preceding discussion 
of a semiclassical view of a small-polaron 
hop is suggestive of a mechanism via which 
small-polaron motion may be highly correl- 
ated. In particular, if a small polaron’s hop 
is to be considered independent of its previous 
hop then the distortion associated with creating 
the coincidence event of the first hop must 
relax, dissipating an amount of energy com- 
parable to the hopping activation-energy 
away from the involved sites, in a time which 
is much shorter than the mean time between 

small-polaron hops (9). If the carrier has a 
substantial probability of hopping (either to a 
different neighbor or back to the site it occupied 
previously) before the lattice relaxes then its 
motion will be highly correlated. In this case 
the effective activation energy characterizing 
small-polaron hopping motion will be sub- 
stantially reduced from that associated with 
uncorrelated hopping motion since much of 
the distortion needed to form a coincidence 
event is present residually from the prior hop. 
In fact, in the highly correlated situation the 
carrier can be viewed as frequently hopping 
back and forth between two coincident sites. 
In this circumstance a contribution to the net 
diffusion of the particle occurs when it alters 
its back and forth jumping motion to hop to a 
third site. Time is not adequate in the present 
review to develop a detailed discussion of this 
phenomenon; for this the reader is referred to 
the literature (9-11). However, as illustrated 
in Fig. 3, in this type of correlated small- 
polaron hopping situation the high-tempera- 
ture small-polaron hopping mobility need not 
manifest a clear thermally activated behavior. 
In fact, the mobility in this domain may even 
fall slowly with increasing temperature. Since 
correlation effects will only manifest them- 
selves when the jump rate is greater than or 

FIG. 3. The semiclassically-calculated small-polaron 
drift mobility is plotted versus B/T for Ea/hwO = 10 
with correlation effects being included (upper curve) 
and with them being ignored (lower curve). 
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comparable to the relaxation rate, typically 
this restricts consideration of these corre- 
lation effects to sufficiently large values of the 
transfer integral J. 

Associated with small-polaron hopping 
motion is a rather distinctive ac conductivity 
(6, 7, 12). Briefly, in the high-temperature 
semiclassical regime, the ac conductivity is 
typically peaked at a frequency near 2E,,/h. 
with a width- (E~IcTE~)~‘~/~. In the low-temper- 
ature regime (XT-C tiw,) the details of the 
absorption spectrum depend on the frequency 
spectrum of the phonons with which the 
carrier can interact. If a carrier interacts 
with a narrow band of optical frequencies, 
its low-temperature conductivity is made up 
of a series of peaks the envelope of which is 
again peaked near 2EJA but with a smaller 
width N (S~~W,E#‘~/~. While the high-temper- 
ature conductivity is characterized by the 
activation energy (2E, - iic0)~/8E,, in the 
low-temperature limit the ac conductivity 
approaches ternperature independence. This 
is because the dominant processes at low 
temperatures are those in which an electron 
absorbs a photon and spontaneously emits 
phonons. It should be stressed that the details 
of the temperature dependence in the low- 
temperature re,gime is an artifact of restricting 
the electron-lattice interaction to optical 
phonons. Finally, it is noted that a small- 
polaron conductivity (absorption) peak may 
be associated .with either small-polaron hop- 
ping about a defect or free small-polaron 
motion. 

The problem of understanding the Hall 
mobility associated with the hopping motion 
of small-polarons in the high-temperature 
semiclassical regime is an intricate one which 
has received considerable attention during the 
past decade (9, 13-15). The question of how 
the application of a small static magnetic 
field will alter the polaron’s hopping motion is 
central to these investigations. Generally 
speaking the magnetic field only manifests 
itself when the lattice distorts in such a way 
as to provide a carrier in a zero field situation 
with equal probabilities of hopping to any one 
of several sites. It is in these instances, when 
the carrier may be said to have a choice of 
“final” sites, that a magnetic field can effect 

the hopping motion so as to provide a Hall 
current. Not surprisingly, the Hall mobility 
associated with hopping motion differs quali- 
tatively from what results from a free-electron- 
like picture. For instance, the Hall mobility 
will generally differ very substantially in both 
magnitude and temperature dependence from 
the mobility associated with a conductivity 
measurement; concomitantly the Hall coeffi- 
cient does not simply measure the carrier 
number. In fact, it has been demonstrated 
that when the drift mobility is low (<IO-’ 
cm*/v set) and thermally activated, the 
mobility measured in a Hall experiment 
can be much higher (-10-l cm’/V set) and less 
activated; it can even be a decreasing function 
of increasing temperature. Furthermore, al- 
though the sign of the Hall effect for free- 
electron-like behavior by itself determines 
the sign of the charge carrier, in a hopping 
situation this is no longer the case (16). For 
instance, the hopping motion of holes will 
yield a hole-signed Hall effect in a square 
lattice but not in a hexagonal lattice. Thus 
unlike the free-electron situation, a Hall 
effect experiment does not directly measure 
the carrier’s drift mobility. 

Finally, a short comment about the thermo- 
electric power associated with hopping motion 
is in order. The thermopower measurement 
is in effect a measurement of the average 
energy carried by a particle as it moves through 
a material. In the case of hopping motion the 
question which arises is how much of the 
energy which is absorbed in making a hop is 
carried with the particle. To answer this 
question we must examine how much vibra- 
tional energy is absorbed and/or emitted at 
the initial and final sites of a jump in the hop 
process. In the simplest model of small- 
polaron motion, energy is absorbed and 
emitted equally at both sites and none of the 
hopping energy is carried with the particle. 
However, if as in a classical over-the-barrier 
hop, the energy to hop is all absorbed at the 
initial site and emitted at the final site, then the 
hopping energy is all carried along with the 
carrier. Alternatively, if, as in the case of 
correlated small-polaron hopping motion, 
the energy is absorbed primarily at the final 
site and emitted at the initial site, then the 
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hopping energy is carried in the direction 
opposite to that of the carrier (6). 
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